Skip to main content
Log in

Probability matching priors for linear calibration

  • Published:
Test Aims and scope Submit manuscript

Summary

In the linear calibration problem, a model is fit to paired observations arising from two measurement techniques, one known to be far more accurate (but also more expensive) than the other. The fitted model is then used with univariate observations from the less accurate technique to impute values from the more accurate one. The Bayesian paradigm emerges as attractive in this context, but the choice of an appropriate noninformative prior distribution has been controversial. In this paper we derive a class of such distributions, and provide sufficient conditions under which they lead to proper posterior densities. These priors, which we refer to asprobability matching priors, are designed to produce posterior credible intervals which are asymptotically identical to their frequentist counterparts. We provide details on the implementation of our procedure using sampling-based methods, and obtain significant simplifications over previous Bayesian approaches in this area. We compare the performance of several members of our prior class in the context of two illustrative examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Berger, J. O. and Bernardo, J. M. (1989) Estimating a product of means: Bayesian analysis with reference priors.J. Amer. Statist. Assoc. 84, 200–207.

    Article  MathSciNet  Google Scholar 

  • Berger, J. O. and Bernardo, J. M. (1992a). On the development of reference priors.Bayeslan Statistics 4 (J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith, eds.). Oxford: University Press, 35–60, (with discussion).

    Google Scholar 

  • Berger, J. O. and Bernardo, J. M. (1992b). Ordered group reference priors with application to the multinomial problem.Biometrika 79, 25–37.

    Article  MathSciNet  Google Scholar 

  • Berkson, J. (1969). Estimation of a linear function for a calibration line: consideration of a recent proposal.Technometrics 11, 649–660.

    Article  Google Scholar 

  • Bernardo, J. M. (1979). Reference posterior distributions for Bayesian inference.J. Roy. Statist. Soc. B 41, 113–147, (with discussion).

    MathSciNet  Google Scholar 

  • Brown, P. J. (1982). Multivariate calibration.J. Roy. Statist. Soc. B,44, 287–321, (with discussion).

    Google Scholar 

  • Brown, P. J. (1993).Measurement, Regression, and Calibration, Oxford: Clarendon Press.

    MATH  Google Scholar 

  • Dahiya, R. C. and McKeon, J. J. (1991). Modified classical and inverse regression estimators in calibration.Sankhyã, Ser. B 53, 48–55.

    MathSciNet  Google Scholar 

  • Datta, G. S. and Ghosh, J. K. (1995a). On priors providing frequentist validity for Bayesian inference.Biometrika 82, 37–45.

    Article  MathSciNet  Google Scholar 

  • Datta, G. S. and Ghosh, J. K. (1995b). Noninformative priors for maximal invariant parameters in group models.Test 4, 95–114.

    MathSciNet  Google Scholar 

  • Datta, G. S. and Ghosh, M. (1996). On the invariance of noninformative priors.Ann. Statist., (to appear).

  • Eisenhart, C. (1939). The interpretation of certain regression methods and their use in biological and statistical research.Ann. Math. Statist. 10, 162–184.

    MathSciNet  Google Scholar 

  • Fieller, E. C. (1954). Some problems in interval estimation.J. Roy. Statist. Soc. B 16, 175–185.

    MathSciNet  Google Scholar 

  • Gelfand, A. E. and Smith, A. F. M. (1990). Sampling-based approaches to calculating marginal densities.J. Amer. Statist. Assoc. 85, 398–409.

    Article  MathSciNet  Google Scholar 

  • Gelman, A. and Rubin, D. B. (1992).Statist Sci. 7, 457–511, (with discussion).

    Google Scholar 

  • Ghosh, J. K. and Mukerjee, R. (1992). Non-informative priors.Bayesian Statistics 4 (J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith, eds.), Oxford: University Press, 195–210, (with discussion).

    Google Scholar 

  • Gilks, W. R. and Wild, P. (1992). Adaptive rejection sampling for Gibbs sampling.Applied Statistics 41, 337–348.

    Article  Google Scholar 

  • Gleser, L. J. and Hwang, J. T. (1987). The nonexistence of 100(1−α)% confidence sets of finite expected diameter in errors-in-variables and related models.Ann. Statist. 15, 1351–1362.

    MathSciNet  Google Scholar 

  • Hill, B. M. (1981). Discussion of “A Bayesian analysis of the linear calibration problem”.Technometrics 23, 335–338.

    Article  Google Scholar 

  • Hoadley, B. (1970). A Bayesian look at inverse linear regression.J. Amer. Statist. Assoc. 65, 356–369.

    Article  Google Scholar 

  • Hunter, W. G. and Lamboy, W. F. (1981). A Bayesian analysis of the linear calibration problem.Technometrics 23, 323–350, (with discussion).

    Article  MathSciNet  Google Scholar 

  • Jeffreys, H. (1961).Theory of Probability, 3rd Oxford: Clarendon Press.

    MATH  Google Scholar 

  • Krutchkoff, R. G. (1967). Classical and inverse regression methods of calibration.Technometrics 9, 429–439.

    Article  MathSciNet  Google Scholar 

  • Kubokawa, T. and Robert, C. (1994). New perspectives on linear calibration.J. Multivariate Analysis 50, 178–200.

    Article  MathSciNet  Google Scholar 

  • Lawless, J. F. (1981). Discussion of “A Bayesian analysis of the linear calibration problem”.Technometrics 23, 334–335.

    Article  Google Scholar 

  • Liseo, B. (1993). Elimination of nuisance parameters with reference priors.Biometrika 80, 295–304.

    Article  MathSciNet  Google Scholar 

  • Loève, M. (1955).Probability Theory. New York: D. Van Nostrand Company.

    MATH  Google Scholar 

  • Peers, H. W. (1965). On confidence sets and Bayesian probability points in the case of several parameters.J. Roy. Statist. Soc. B 27, 9–16.

    MathSciNet  Google Scholar 

  • Philippe, A. and Robert, C. (1994). A note on the confidence properties of reference priors for the calibration model.Tech. Rep., Université de Rouen.

  • Reid, N. (1996). Likelihood and Bayesian approximation methods.Bayesian Statistics 5 (J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith, eds.). Oxford: University Press, 349–366, (with discussion).

    Google Scholar 

  • Stein, C. (1985). On the coverage probability of confidence sets based on prior distributions.Sequential Methods in Statistics, Banach Center Publications Vol. 16. Warsaw: Polish Scientific Publishers, 485–514.

    Google Scholar 

  • Tibshirani, R. (1989). Noninformative priors for one parameter of many.Biometrika 76, 604–608.

    Article  MathSciNet  Google Scholar 

  • Welch, B. L. and Peers, H. W. (1963). On formulae for confidence points based on intervals of weighted likelihoods.J. Roy. Statist. Soc. B 25, 318–329.

    MathSciNet  Google Scholar 

  • Williams, E. J. (1969). A note on regression methods in calibration.Technometrics 11, 189–192.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghosh, M., Carlin, B.P. & Srivastava, M.S. Probability matching priors for linear calibration. Test 4, 333–357 (1995). https://doi.org/10.1007/BF02562631

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02562631

Keywords

Navigation